Growth of conjugacy classes of Schottky groups in higher rank symmetric spaces
نویسنده
چکیده
Let X be a globally symmetric space of noncompact type, and Γ ⊂ Isom(X) a Schottky group of axial isometries. Then M := X/Γ is a locally symmetric Riemannian manifold of infinite volume. The goal of this note is to give an asymptotic estimate for the number of primitive closed geodesics in M modulo free homotopy with period less than t.
منابع مشابه
A NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملConjugacy Classes of Trialitarian Automorphisms and Symmetric Compositions
The trialitarian automorphisms considered in this paper are the outer automorphisms of order 3 of adjoint classical groups of type D4 over arbitrary fields. A one-to-one correspondence is established between their conjugacy classes and similarity classes of symmetric compositions on 8-dimensional quadratic spaces. Using the known classification of symmetric compositions, we distinguish two conj...
متن کاملThe ranks of the classes of $A_{10}$
Let $G $ be a finite group and $X$ be a conjugacy class of $G.$ The rank of $X$ in $G,$ denoted by $rank(G{:}X),$ is defined to be the minimal number of elements of $X$ generating $G.$ In this paper we establish the ranks of all the conjugacy classes of elements for simple alternating group $A_{10}$ using the structure constants method and other results established in [A.B.M. Bas...
متن کاملSome connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملOn the Regular Power Graph on the Conjugacy Classes of Finite Groups
emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005